3 The fundamentals: Algorithms, the integers, and matrices

3.4 The integers and division

This section introduces the basics of number theory (number theory is the part of mathematics involving integers and their properties).

- 1. a|b if b = a k, for some integer k (note that a|b is not the fraction b/a, but it rather shows that a is a factor of b)
- 2. $a \not| b$ if a is not a factor of b. Examples: 3|18 but $3 \not| 20$.
- 3. properties of a|b: (you should be able to prove them) Let $a,b,c\in\mathbb{Z}$. Then:
 - $(a|b \wedge a|c) \rightarrow a|(b+c)$
 - $a|b \rightarrow a|(bc), \forall c \in \mathbb{Z}$
 - $\bullet \ (a|b \ \land \ b|c) \ \rightarrow \ a|c$
 - $(a|b \wedge a|c) \rightarrow a|(mb+nc), \forall m, n \in \mathbb{Z}$
- 4. Division algorithm: $\forall a, d \in \mathbb{Z}$, with $d > 0 \Rightarrow \exists ! q, r \ (0 \leq r < d)$ such that a = dq + r
- 5. in the equation above, a is called the <u>dividend</u>, d is the <u>divisor</u>, q is the <u>quotient</u>, and r is the <u>remainder</u>. Note that a and d are the given integers, and q and r are the unique two integers that make the division algorithm work for the given a and d. Example: Given 14 and 5, find the quotient and the remainder: $14 = 5 \cdot 2 + 4$, so q = 2 and r = 4 and they are unique for the pair of numbers 14 and 5. We then have that 2 = 14 div 5 and 4 = 14 mod 5
- 6. $a \mod m$ gives the reminder when a is divided by m
- 7. modular arithmetics: $a \equiv b \pmod{m} \iff m | (a b)$. This means that both a and b have the same reminder when they are divided by m.

- 8. modular arithmetics: $a \not\equiv b \pmod{m} \iff m \not\mid (a-b)$ Example: $14 \equiv 4 \pmod{5}$ since $5 \mid (14-4)$, however $14 \not\equiv 2 \pmod{5}$ since $5 \not\mid (14-2)$
- 9. **Theorem:** $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$ (note that when \pmod{m} is in the equation, then we use the symbol \equiv , but if we use the $\mod m$, then we use the symbol = since we're talking about remainders.)
- 10. modular arithmetic operations:
 - addition: $\left(a \operatorname{\underline{mod}} m + b \operatorname{\underline{mod}} m\right) \operatorname{\underline{mod}} m = (a+b) \operatorname{\underline{mod}} m$
 - subtraction: $\left(a \operatorname{\underline{mod}} m b \operatorname{\underline{mod}} m\right) \operatorname{\underline{mod}} m = (a b) \operatorname{\underline{mod}} m$
 - multiplication: $\left(a \underline{\bmod} m \cdot b \underline{\bmod} m\right) \underline{\bmod} m = (a \cdot b) \underline{\bmod} m$
- 11. not true for division (division is not defined for modular arithmetic. We define cancellation, and one can only cancel if the number that one cancels by is relatively prime to *m*–see Section 3.7)
- 12. if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
 - $a + c \equiv b + d \pmod{m}$
 - $a c \equiv b d \pmod{m}$
 - $a \cdot c \equiv b \cdot d \pmod{m}$
 - $a\alpha \equiv b\alpha \pmod{m}$, for $\alpha > 0, m \ge 2, \alpha \in \mathbb{Z}$
 - $a\alpha \equiv b\alpha \pmod{m\alpha}$, for $\alpha > 0, m \ge 2, \alpha \in \mathbb{Z}$
- 13. Applications: hashing functions, pseudo random numbers, code generating in cryptography

3.5 Primes and greatest common divisors

1. a prime p is an integer greater than 1 whose only positive factors are 1 and p (note that 2 is the smallest prime number, and the only even prime number). If an integer greater than 1 is not prime, then it is a <u>composite number</u>. Note that only integers that are greater than or equal to 2 are either primes or composite.

- 2. if n is a composite integer, then n has prime divisors less than or equal to \sqrt{n} (so in searching for divisors in a factorization of n, one should only look up to \sqrt{n})
- 3. <u>Fundamental Theorem of Arithmetic</u>: every positive integer greater than 1 can be uniquely written as product of primes (where the factors are arranged in an increasing order)

```
i.e.: n = p_1 \cdot p_2 \cdot \ldots \cdot p_{\alpha}, where p_i \leq p_{i+1} for 1 \leq i \leq \alpha - 1
```

- 4. there are infinitely many primes (look at the construction in the proof)
- 5. The prime number theorem: The ratio of the number of primes not exceeding x and $\frac{x}{\ln x}$ approaches 1 as $x \to \infty$. Proof is complicated, but its usefulness comes in estimating the odds of choosing a random number that is prime.
- 6. gcd of two numbers = greatest common divisor: gcd(12,30) = 6
- 7. lcm of two numbers = least common multiple: lcm(12, 30) = 60
- 8. a and b are relatively prime (or also called coprimes) if gcd(a, b) = 1: The numbers 7 and 9 are relatively prime
- 9. the integers a_1, a_2, \ldots, a_n are pairwise relatively prime if all pairs of them are relatively prime (i.e. $gcd(a_i, a_j) = 1, \forall i, j \text{ with } 1 \leq i \neq j \leq n$).
- 10. $ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$

3.6 Integers and algorithms

This section presents techniques for transforming numbers from one base to another.

- 1. Base b expansions of n: $n = a_k b^k + a_{k-1} b^{k-1} + ... + a_1 b + a_0$
- 2. Example: 237 in decimal representation is $237 = 2 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0$ and 9 in binary is $9 = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 2^3 + 2^0$
- 3. Binary (base 2) expansions integers are bit strings that represent the particular integers, and they are used by computers to represent and do arithmetic with integers
- 4. Hexadecimal expansion of also used by computer. It uses $0, 1, \ldots, 9, A, B, C, D, E, F$
- 5. Bytes are bit strings of length 8

- 6. Base conversion (expressing n base b):
 - $n = bq_0 + a_0 \ (0 \le a_0 < b)$ and a_0 is the rightmost digit of n base b
 - $q_0 = bq_1 + a_1 \ (0 \le a_1 < b)$ and a_1 is the 2nd digit from the right of n base b
 - repeat to find a_2, a_3, \ldots until $q_i = 0$ for some i
- 7. converting from binary to hexadecimal: each hexadecimal digit corresponds to a block of 4 digits
- 8. binary addition: let $a = (a_{n-1}a_{n-2} \dots a_1a_0)$ and $b = (b_{n-1}b_{n-2} \dots b_1b_0)$. Then
 - a+b is found using the usual method of adding two numbers modulo 2
 - $ab = a(\sum_{i=0}^{n-1} 2^i) = \sum_{i=0}^{n-1} a2^i$, where multiplying a by 2^i is adding i zeros at the end of a ($i.e.101 \times 2^3 = 101000$) (look at the example on top left of page 225)
- 9. <u>Euclidean Algorithm</u>: gives an alternative way to find the gcd of two numbers without using the prime factorization of the two numbers.

3.7 Applications of number theory

- 1. writing the gcd(a,b) = d as a linear combination $d = \alpha a + \beta b$, for some $\alpha, \beta \in \mathbb{Z}$
- 2. if a and b are relatively prime, then $1 = \alpha a + \beta b$, for some $\alpha, \beta \in \mathbb{Z}$
- 3. if p is a prime such that $p|(a_1 \cdot a_2 \cdot \ldots \cdot a_n)$, then $p|a_i$ for some i $(1 \le i \le n)$
- 4. simplifications: if $a, b, c, m \in \mathbb{Z}$ (m > 0) and gcd(c, m) = 1, then

$$ac \equiv bc \pmod{m} \Rightarrow a \equiv b \pmod{m}$$

- 5. however, if $gcd(c, m) \neq 1$, the above result doesn't hold (see Example 2 page 234)
- 6. linear congruence: $ax \equiv b \pmod{m}$ (where $a, b, m \in \mathbb{Z}$ (m > 0) and x is the variable)
- 7. \overline{a} (or a^{-1}) is the inverse of a modulo m if $\overline{a}a \equiv 1 \pmod{m}$
- 8. Chinese Remainder Thm (solving systems of linear congruences): for relatively prime numbers m_i , the system $x \equiv a_1 \mod m_1$

$$x \equiv a_2 \operatorname{mod} m_2$$

:

$$x \equiv a_n \mod m_n$$

has unique solution modulo $m = \prod_{i=1}^{n} m_i$, namely

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \ldots + a_n M_n y_n,$$

where $M_i = \frac{m}{m_i}$, and y_i is the inverse of M_i modulo m_i

- 9. Fermat's Little Thm: If p is a prime, and $p \not| a$, then $a^{p-1} \equiv 1 \mod p$ (or for any prime p, $a^p \equiv a \mod p$).
- 10. the converse of Fermat's Little Thm doesn't hold since there are some composite numbers n called pseudoprimes, such that in the form $a^{n-1} \equiv 1 \mod n$, for example n = 341.